
 

 

 
 

 
 
 

By 
 

Dr. Burcu Keskin 
Department of Information Systems, Statistics, and Management Science 

The University of Alabama  
Tuscaloosa, Alabama 

 
Dr. Allen Parrish 

CARE Research & Development Laboratory 
The University of Alabama  

Tuscaloosa, Alabama 

 

 

 

 

 

 

 

 

 

 

 

 

Prepared by 

UTCA 
University Transportation Center for Alabama 

The University of Alabama, The University of Alabama in Birmingham, 
 and The University of Alabama at Huntsville  

 
UTCA Report Number 09104 

May 2010 

 
 

Optimal Traffic Resource Allocation and Management 
 
 

UTCA Theme:  Management and Safety of Transportation Systems 



 
 

 
 
 

About UTCA The University Transportation Center for Alabama (UTCA) is designated as a “university transportation center” by the US Department of Transportation.  UTCA serves a unique role as a joint effort of the three campuses of the University of Alabama System.  It is headquartered at the University of Alabama (UA) with branch offices at the University of Alabama at Birmingham (UAB) and the University of Alabama in Huntsville (UAH).  Interdisciplinary faculty members from the three campuses (individually or as part of teams) perform research, education, and technology-transfer projects using funds provided by UTCA and external sponsors.  The projects are guided by the UTCA Annual Research Plan.  The plan is prepared by the Advisory Board to address transportation issues of great importance to Alabama and the region.    
Mission Statement and Strategic Plan  The mission of UTCA is “to advance the technology and expertise in the multiple disciplines that comprise transportation through the mechanisms of education, research, and technology transfer while serving as a university-based center of excellence.”       The UTCA strategic plan contains six goals that support this mission:     

• Education – conduct a multidisciplinary program of coursework and experiential learning that reinforces the theme of transportation; 
• Human Resources – increase the number of students, faculty, and staff who are attracted to and substantively involved in the undergraduate, graduate, and professional programs of UTCA; 
• Diversity – develop students, faculty, and staff who reflect the growing diversity of the US workforce and are substantively involved in the undergraduate, graduate, and professional programs of UTCA; 
• Research Selection – utilize an objective process for selecting and reviewing research that balances the multiple objectives of the program; 
• Research Performance – conduct an ongoing program of basic and applied research, the products of which are judged by peers or other experts in the field to advance the body of knowledge in transportation; and 
• Technology Transfer – ensure the availability of research results to potential users in a form that can be directly implemented, utilized, or otherwise applied.  

Theme        The UTCA theme is “MANAGEMENT AND SAFETY OF TRANSPORTATION SYSTEMS.”  The majority of UTCA’s total effort each year is in direct support of the theme; however, some projects are conducted in other topic areas, especially when identified as high priority by the Advisory Board.  UTCA concentrates on the highway and mass-transit modes but also conducts projects featuring rail, waterway, air, and other transportation modes as well as intermodal issues.  
Disclaimer The project associated with this report was funded wholly or in part by the University Transportation Center for Alabama (UTCA). The contents of this project report reflect the views of the authors, who are solely responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the US Department of Transportation University Transportation Centers Program in the interest of information exchange. The US Government, UTCA, and the three universities sponsoring UTCA assume no liability for the contents or use thereof. 
 

 
University Transportation Center fUniversity Transportation Center fUniversity Transportation Center fUniversity Transportation Center for Alabamaor Alabamaor Alabamaor Alabama    



 

 

Analysis of an Integrated Maximum Covering  
and Patrol Routing Problem 

 
 

 

 
By 

 
Dr. Burcu Keskin 

Department of Information Systems, Statistics, and Management Science 
The University of Alabama  

Tuscaloosa, Alabama 
 

Dr. Allen Parrish 
CARE Research & Development Laboratory 

The University of Alabama  
Tuscaloosa, Alabama 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prepared by 

UTCA 
University Transportation Center for Alabama 

The University of Alabama, The University of Alabama in Birmingham, 
 and The University of Alabama at Huntsville  

 
UTCA Report Number 09104 

May 2010 



ii 

 

Technical Report Documentation Page 

1.  Report No 

     FHWA/CA/OR- 

 

2.  Government Accession No. 3.  Recipient Catalog No. 

4.  Title and Subtitle 

Optimal Traffic Resource Allocation and Management 

 

5.  Report Date 

May 2010 

6.  Performing Organization Code 

 

7.  Authors 

Dr. Burcu Keskin and Dr. Allen Parrish 

 

8.  Performing Organization Report No.  

UTCA Final Report Number 09104 

9.  Performing Organization Name and 

Address 

Department of Information Systems, Statistics, 

and Management Science 

The University of Alabama; Box 870226 

Tuscaloosa, Alabama 35487-0226 

10. Work Unit No. 

 

 

11. Contract or Grant No. 

 

 

12. Sponsoring Agency Name and Address 

University Transportation Center for Alabama 

The University of Alabama; Box 870205 

Tuscaloosa, AL 35487-0205 

13. Type of Report and Period Covered 

Final Report: January 1, 2009–December 31, 

2009 

 

14. Sponsoring Agency Code 

 

 

15. Supplementary Notes 

 

 

 

 

16. Abstract 

In this paper, we address the problem of determining the patrol routes of state troopers for maximum coverage of 

highway spots with high frequencies of crashes (hot spots).  We develop a mixed integer linear programming model 

for this problem under time feasibility and budget limitation.  We solve this model using local and tabu-search based 

heuristics.  Via extensive computational experiments using randomly generated data, we test the validity of our 

solution approaches.  Furthermore, using data from the state of Alabama, we provide recommendations for i) critical 

levels of coverage; ii) factors influencing the service measures; and iii) dynamic changes in routes. 

17.  Key Words 

Maximum covering; patrol routing; time window; public 

service; local search; tabu search 

 

18.  Distribution Statement 

19.   Security Classif (of 

this report) 

Unclassified 

 

20. Security Classif. (of this 

page) 

Unclassified 

 

21. No of Pages 

37 

22.  Price 

Form DOT F1700.7 (8-72) 



iii 

 

 

Table of Contents 

Table of Contents ...................................................................................................................iii 

List of Tables .........................................................................................................................iv 

List of Figures ........................................................................................................................iv 

Executive Summary………………………………………………………………………... v 

 

1.0 Introduction .....................................................................................................................1 

 

2.0 Literature Review............................................................................................................3 

2.1 State Trooper/Police Patrol Models ....................................................................3 

2.2 Orienteering Problem (OP) .................................................................................4 

 

3.0 General Model ................................................................................................................6 

Constraints Related to Schedule Feasibility .......................................................7 

Route Structing Constraints ................................................................................8 

Constraints Related to Visiting Hot Spots ..........................................................8 

Integrality and Non-negativity Constraints .........................................................9 

Overall Model .....................................................................................................9 

 

4.0 Solution Approaches .......................................................................................................11 

4.1 Construction Algorithm ......................................................................................11 

4.1.1 Route Initialization Algorithm ...........................................................11 

4.1.2 Insertion Algorithm ............................................................................13 

4.2 Improvement Algorithms ....................................................................................14 

4.2.1 Relocate Operator ..............................................................................14 

4.2.2 Exchange Operator.............................................................................15 

4.2.3 Local Search.......................................................................................15 

4.2.4 Tabu Search .......................................................................................16 

 

5.0 Computational Experiments............................................................................................17 

5.1 Performance-based Experiments ........................................................................17 

5.1.1 Experiment with Randomly Generated Data .....................................17 

5.1.2 Experiment with Real-Life Data ........................................................18 

5.2 Managerial Insights .............................................................................................20 

 

6.0 Conclusions and Future Work ........................................................................................24 

 

7.0 Acknowledgements .........................................................................................................25 

8.0 References .......................................................................................................................26 

Appendix .........................................................................................................................30 



iv 

 

 

List of Tables 

Number           Page 

1 Performance of LS and TS for random data ...........................................................18 

2 Performance of LS and TS for real data .................................................................19 

3 Service measure performances by incremental state troopers ................................21 

4 LS performance for real data with different weights ..............................................23 

 

List of Figures 

Number           Page 

1 A representative example ........................................................................................7 

2 Multiple state troopers at hot spot i ∈ ℕ .................................................................9 

3 Neighborhood search operators ..............................................................................14 

4 Local search and improvement flow charts ............................................................16 

5 Coverage with LS and TS due to different state trooper cars in Jefferson Co. .......20 

6 Coverage with LS in the city of Mobile and Tuscaloosa County ...........................21 



v 

 

 

Executive Summary 

In this paper, we address the problem of determining the patrol routes of state troopers for 

maximum coverage of highway spots with high frequencies of crashes (hot spots).  We develop a 

mixed integer linear programming model for this problem under time feasibility and budget 

limitation.  We solve this model using local and tabu-search based heuristics.  Via extensive 

computational experiments using randomly generated data, we test the validity of our solution 

approaches.  Furthermore, using data from the state of Alabama, we provide recommendations 

for i) critical levels of coverage; ii) factors influencing the service measures; and iii) dynamic 

changes in routes. 

 



Section 1
Introduction

Traffic accidents pose a great danger to passengers’ lives. In 2009, 33,963 people died in traffic
crashes in the United States, an 8.9% decline from 2008 and the lowest total since 1954 (NHTSA,
2010). Even though fatality rates continue to drop in the United States, the number of fatalities is
still significant.

Furthermore, the economic impact of motor vehicle crashes on U.S. roadways is noteworthy. The
NHTSA estimates this cost as $230.6 billion per year (nearly2.3 percent of the nation’s gross
domestic product), or an average of $820 per person in the country (Blincoe,et al., 2002). Thus,
it is of humanitarian and economic importance to reduce traffic accidents.

It is believed that concentrated traffic enforcement has a positive impact in reducing the number
of crashes and discouraging dangerous behavior (Steil and Parrish, 2009). One such example, the
NHTSA-sponsored “Click it or Ticket” program, uses a combination of publicity and increased
law enforcement to educate and motivate the public. Anotherprogram, “Targeting Aggressive
Cars and Trucks,” sponsored by the Federal Motor Carriers Safety Administration (FMSCA,
2008), encourages the participating states to identify additional law enforcement and publicity
strategies that will deter aggressive driving. Due to limited resources, a primary concern of public
safety officials is theeffective use of patrol cars and state troopersin reducing traffic accidents. A
typical method for state troopers is to patrol “hot spots’: certain locations of highways with high
frequencies of crashes over a certain time period. These locations are often associated with a
particular type of crash (for example, excessive crashes caused by speed or DUI). Furthermore,
hot spots vary with respect to the day of week and time of day; that is, a particular highway
location may be a hot spot on a particular day and time but not at other times.

With this motivation, given identified hot spots on mile-posted highways, we focus on building
effective state trooper patrol routes with maximum hot spotcoverage. This problem has
similarities tothe orienteering problem (OP) (Feillet,et al., 2005; Tsiligirides, 1984), also
known as the selective traveling salesman problem (STSP), which consists of finding a circuit that
maximizes collected profit such that travel costs do not exceed a preset valueC. For our problem,
the service time at a hot spot can be viewed as the “profit” whereas the shift duration is equivalent
to setting a value forC. However, due to time windows of hot spots, we have an “expiration time”
on the profits. Furthermore, we consider routing multiple cars simultaneously. Therefore, our
problem is related to the team orienteering problem with time windows (TOPTW), a variant of
OP. In the TOPTW, the goal is to maximize the total profit by a fixed number of routes such that
the locations are visited within a time window and the maximum tour length is limited. The main
difference between our problem and the TOPTW is that we do nothave a fixed profit associated
with each location. The collected profit depends on the service time, which could be as short as
one minute or as long as the length of the time window (up to 270minutes).

This property necessitates a novel solution approach to theproblem. For this purpose, we develop
a mixed integer programming formulation. For real data, unfortunately, the problem is not
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solvable computationally using a state-of-the-art commercial solver, CPLEX 12.1.∗ In fact, in the
appendix, we prove that our problem belongs to the same classof NP-hard problems as OP
(Golden,et al., 1987). Therefore, we focus on local search– and tabu search– based heuristic
approaches that provide quality solutions in short periodsof time. Since this problem needs to be
solved over a number of state trooper post regions, several days, and many shifts, having fast and
effective heuristic approaches is a requirement for the applicability of the solutions by
practitioners. As it is not possible to cover all of the hot spots with given resources, we also
provide additional service measures, including the percentage of number of hot spots covered and
the percentage of coverage length based on the outcome of theheuristics. These service measures
provide additional insights into the solutions and help in evaluating the constraints related to the
number of state trooper cars and patrol duration.

To summarize, this paper is unique in that it considers the integrated optimization of strategic
crash covering and patrol routing problems while designingan efficient operating plan for state
troopers. Its formulation is a methodological contribution to the current literature. Furthermore,
the problem-specific heuristic approaches—local and tabu searches—help decision-makers act
quickly and rationally to ensure traffic-law enforcement.

The remainder of this paper is structured as follows. In Section , we present the literature review.
In Section , we present the general mathematical model, including necessary assumptions and
notation. In Section , we present the analysis of the problemand the solution approaches based on
the characteristics of the problem. In Section , we discuss the computational results based on
randomly generated data and real data. Finally, in Section ,we provide our conclusions,
recommendations, and future work.

∗CPLEX is a trademark of IBM.
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Section 2
Literature Review

Our research builds on the assumption that it is possible to identify hot spots, where accidents are
more likely to happen. Most of the literature on accident analysis and prevention focuses on
methods identifying hot spots (Anderson, 2006; Cheng and Washington, 2005; Chen and Quddus,
2003; Gatrell,et al., 1996; McCullagh, 2006; Miranda-Moreno et al., 2007; Steil and Parrish,
2009). However, our focus is not on hot-spot identification.To identify hot spots, we utilize the
data and algorithms of the Critical Analysis Reporting Environment (CARE)—a data-analysis
software package developed by researchers at the University of Alabama (Steil and Parrish,
2009). CARE uses advanced analytical and statistical techniques on the crash and citation data for
the State of Alabama to generate valuable information, including hot-spot locations, hot-spot
times and durations, and hot-spot severity (in terms of number of fatalities). We utilize this
information to manage state trooper resources and patrol routes.

Our work mostly borrows from and contributes in two main areas of operations research: state
trooper patrolling models and the orienteering problem. Next, we review and summarize the
research on these areas.

2.1 State Trooper/Police Patrol Models

The research on police patrols dates back to the early 1970s.The early works were concerned
with answering calls for service, mostly related to a policeofficer servicing a crime call. Hence,
mostly queueing models were used (Birge and Pollock, 1989; Chaiken and Dormont, 1978;
Green, 1984; Larson, 1973). Other approaches for the patrolrouting problem include
mathematical modeling (Curtin,et al., 2007; Mitchell, 1972; Wolfler-Calvo and Cordone, 2003),
heuristic solutions (Lauri and Koukam, 2008; Reis, et al., 2006; Wolfler-Calvo and Cordone,
2003), graph theory (Chawathe, 2007; Duchenne,et al., 2005, 2007), and simulation (Machado
et al., 2003; Santana et al., 2004). Chawathe (2007), as in our paper, considers a road network
with hot spots. By means of graph theory, the road network is translated to an edge-weighted
graph to find the patrol routes where the weights are related to the importance of the
corresponding locations and the topology of the road network. In this paper, the selection of
weights is somewhat arbitrary and influences the selection of routes.

One approach for the mathematical modeling of patrol routing problems is to invoke the
m-peripatetic salesman problem (m-PSP), which consists of determiningm edge disjoint
Hamiltonian cycles of minimum total cost on a complete graph. Wolfler-Calvo and Cordone
(2003) introducem-PSP in the design of watchman tours, where it is often important to assign a
set of edge-disjoint rounds to the watchman to avoid repeating the same tour and enhancing
security. They solve this model via a decomposition heuristic. Duchenne,et al. (2005, 2007)
improve the formulation of them-PSP by defining new polyhedral properties and cuts and
describe exact branch-and-cut solution procedures for theundirectedm-PSP. The two main
differences between this line of work and ours are the time-sensitivity of hot-spot coverage and
maximization of coverage benefits instead of minimization of travel costs. Therefore, our model
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is unprecedented in the patrol-routing literature that addresses the design of patrol routes while
covering hot spots within their time limits.

2.2 Orienteering Problem (OP)

The OP is first introduced by Tsiligirides (1984) for the orienteering competition. In this
competition, competitors visit as many checkpoints as possible within a time limit where each
checkpoint may have different point values depending on difficulty. The competitor with the most
points wins the game (Chao,et al., 1996a). In a more formal definition, given a weighted graph
with profits associated with the vertices, the OP consists ofselecting a simple circuit of maximal
profit whose length does not exceed a certain pre-specified bound (Feillet,et al., 2005). The OP is
also known as the selective traveling salesperson problem (Laporte and Martello, 1990) or the
maximum collection problem (Butt and Cavalier, 1994). The OP arises in many applications,
including the sport game of orienteering (Chao,et al., 1996a), the home fuel delivery problem
(Golden,et al., 1987), athlete recruiting from high schools (Butt and Cavalier, 1994), routing
technicians to service customers (Tang and Miller-Hooks, 2005), and the personalized mobile
tourist guide (Vansteenwegen et al., 2009).

Some important variants of the orienteering problem include the team orienteering problem
(TOP)–where a fixed number of paths is considered, the orienteering problem with time windows
(OPTW), and the team orienteering problem with time windows(TOPTW). Since Golden,et al.
(1987) prove that the OP is NP-hard, for OP and its variants only a few researchers resort to exact
algorithms. Righini and Salani (2006) and Righini and Salani (2009) use bi-directional dynamic
programming, and Boussier,et al. (2007) propose an exact branch-and-price approach coupled
with a column generation technique. Most other research on OP and the variants have focused on
heuristic approaches, including local search (Vansteenwegen et al., 2009), tabu search (Liang
et al., 2002; Schilde et al., 2009; Tang and Miller-Hooks, 2005), path relinking (Schilde et al.,
2009; Souffriau, et al., 2010), ant-colony optimization (Ke et al., 2008; Liang et al., 2002;
Montemanni and Gambardella, 2009), genetic algorithm (Tasgetiren, 2001), and other
metaheuristics (Archetti,et al., 2007; Tricoire et al., 2010). A recent review summarizingall of
these variants, solution approaches, and benchmark modelsis presented by Vansteenwegen et al.
(2010).

As our problem bears similarities to the TOPTW, we discuss the TOPTW literature in more detail.
The exact branch-and-price algorithm proposed by Boussier, et al. (2007) is generic enough to
handle different kinds of OP, including the TOPTW. The different branching rules and
acceleration techniques introduced in this paper helps solve problem instances with up to 100
nodes. Montemanni and Gambardella (2009) develop local search and ant colony system
algorithms based on the solution of a hierarchic generalization of TOPTW. The algorithms are
tested effective for OPTW and TOPTW with up to 288 nodes. Lastbut not the least,
Vansteenwegen et al. (2009) present a straightforward and very fast iterated local search heuristic,
which combines an insertion step and a shaking step– reverseinsertion operation, to escape from
local optima. It performs well on the available data sets, ranging from 3-20 routes and 48-288
nodes. The solution quality is slightly worse than that of Boussier,et al. (2007) and Montemanni
and Gambardella (2009), but the solution approach requiresonly a few seconds of computation
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time, more than 100 times faster.
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Section 3
General Model

Our problem is formally defined as follows. Within a particular county with an established state
trooper post and during a particular shiftp, there are historically established hot spots that are
more prone to accidents. These hot spots are defined not only with their location on the
mile-posted road network, but also with the time they become“hot.” We denote the set of hot
spots withN = {1, . . . ,n}, where each hot spoti ∈N has an earliestei and latest timel i for its
hotness. By definition,ei < l i . We denote[ei, l i ] as the time windowTWi of hot spoti.
Furthermore, we assume that setN is ordered such thate1≤ e2≤ . . .≤ en. We note that the same
location can be labeled with two indices,i and j, and thatl i < ej indicates two hot spots.
Additionally, we define the dummy nodes 0 andn+1 to denote the start and end of the shift at the
state trooper post respectively.V = {0,n+1}∪N denote the set of all hot spots and the state
trooper post. For a certain shiftp, e0 = Ap andln+1 = Lp, whereAp andLp are the starting and
ending time of the shiftp. Given the maximum number of state trooper cars|K | available, we
aim to find the best patrol route for each state trooper cark∈K with critical stops at hot spots to
create a deterrence effect.

Figure 1 shows an example with 19 hot spots. In this figure, nodes 0 and 20 represent the state
trooper post. Furthermore, hot-spot pairs{3, 10} and{4,16} are at the same location. They are
marked as separate hot spots because they have distinct timewindows; that is, they become “hot”
twice during the shift. For instance, the location marked with hot spots 4 and 16 becomes “hot”
between 7:00-8:30am and 11:00am-12:30pm respectively. InFigure 1(b), we show one of the
routes of the optimal solution for this example. Even thoughthe state trooper patrol includes hot
spots 5, 14, 18, 13, 2, 17, 4, 16, 19, 12, 6, and 15 in that order,only the visits to 5, 17, and 19 fall
into their respective time windows, and only these stops count as a deterrent for accidents.
Additionally, we letE = {(i, j) : i, j ∈ V , i 6= j} define the set of edges. The connected graph
G = (V ,E) represents the underlying road network. We denote the shortest travel time from
vertexi to j asti j > 0, i, j ∈ V , i 6= j. Our objective is to construct the best patrol routes to
maximize the total amount of effective service time, which falls withinTWi of hot spoti, ∀i ∈N .
For this purpose, we define three sets of decision variables:i) xi jk = 1 if state trooper cark∈ K
travels from vertexi to j, (i, j) ∈ E , and 0 otherwise. ii)sik ≥ 0, the starting time of service for
state trooper cark∈K at vertexi ∈ V . iii) fik ≥ 0, the time state trooper cark∈ K leaves vertex
i ∈ V , that is, the end of service.

Before proceeding with our model development, we summarizethe assumptions of the model:

1. There is a one-to-one correspondence between a state trooper car and a state trooper, and all
of the state trooper cars are identical.

2. One state trooper car is sufficient to cover each hot spot. That is, having multiple state
troopers at the same time at a particular location does not augment their deterrence ability.

3. State troopers travel at a constant speed of 60 miles/hour. Therefore, travel time from one
hot spot to another is a calculated constant and does not varyby time of day or day of week.
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(b) An optimal route

Figure 1: A representative example

4. Refueling is possible from any gas station on the patrol route and is not considered.

5. At the beginning of a shift, all state trooper cars start from the same state trooper post 0 and
come back to the same location at the end of the shift.

6. A state trooper car is allowed to arrive beforeei and wait until the start time of the hot spot,
but its presence is a deterrent only afterei .

7. Since roadway traffic accidents have a weekly pattern, we model the problem for a
particular day of the week and shift of the day.

8. Each county is divided into several districts, and each district has only one state trooper
division. State troopers are only responsible for their ownjurisdiction. We conclude that
each district is independent from one another, thus each district can be solved
independently. The formulation below is for a particular district.

Our objective for the Maximum Covering Patrol Routing Problem (MCPRP) is to maximize the
total amount of service time that falls within the time window of a hot spot:

Maximize ∑
i∈N

∑
k∈K

( fik−sik) (MCPRP)

We categorize our constraints under four groups: schedule feasibility, route structuring, visits to
hot spots, and integrality and non-negativity constraints.

Constraints Related to Schedule Feasibility

We need to guarantee schedule feasibility with respect to time considerations for each state
trooper cark, k∈K . If state trooper cark visits vertexj ∈ V after a stop at vertexi ∈ V —that is,
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xi jk = 1—then the start time at vertexj should be greater than or equal to the finish time of the
current vertexi plus the travel time betweeni and j; that is,sjk ≥ fik + ti j . To ensure schedule
feasibility, we need

xi jk ∗ ( fik + ti j −sjk)≤ 0

for each(i, j) ∈ E , andk∈K . We linearize these constraints using a big constant value
Mi j = max{l i + ti j −ej ,0} ≥ 0 as follows:

fik + ti j −sjk ≤ (1−xi jk)Mi j , ∀k∈ K and ∀(i, j) ∈ E . (1)

Before we proceed with other constraints, we define△+(i) = { j ∈ V : (i, j) ∈ E ,ei + ti j ≤ l j} as
the set of vertices that are directly reachable fromi ∈ V within the time window and
△−(i) = { j ∈ V : ( j, i) ∈ E ,ej + ti j ≤ l i} as the set of vertices from whichi is directly reachable.
Other schedule feasibility constraints include time window restrictions:

ei ∑
j∈△+(i)

xi jk ≤ sik, ∀k∈ K and ∀i ∈ V . (2)

l i ∑
j∈△+(i)

xi jk ≥ fik, ∀k∈ K and ∀i ∈ V . (3)

sik ≤ fik, ∀k∈ K and ∀i ∈ V . (4)

Constraint (2) establishes that the effective start timesik at vertexi by state trooper cark is at least
as large as the earliest time window of vertexi ∈ V . Constraint (3) states that the end of the
effective service timefik must be less than or equal to the latest time window of vertexi ∈ V .
Finally, constraint (4) states that the start time of the service by state trooper cark∈ K at vertex
i ∈ V is less than or equal to the end of the service.

Route Structuring Constraints

We characterize the route of a state trooperk∈K with the following equations:

∑
j∈△+(0)

x0 jk = 1, ∀k∈K . (5)

∑
i∈△−( j)

xi jk = ∑
i∈△+( j)

x jik , ∀k∈K and∀ j ∈N . (6)

∑
i∈△−(n+1)

xi,n+1,k = 1, ∀k∈K . (7)

Constraint (5) ensures all of the state trooper cars leave the state trooper post at the beginning of
the shift, and constraints (7) ensures their return to the post at the end of the shift. Finally,
constraint (6) states the balance at each hot spot; that is, each state trooper cark that visits hot
spoti must leave.

Constraints Related to Visiting Hot Spots

It is possible to have multiple cars visiting the same hot spot as in Figures 2(b) and (c). Therefore,
we need to account for any potential double counting if thereis overlap during the visits of
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Figure 2: Multiple state troopers at hot spoti ∈N

multiple cars, as in Figure 2(c), and eliminate it. The next set of constraints ensure that if multiple
cars are at the same hot spot at the same time, they contributeto the objective only once. To
establish these constraints, we define the following additional decision variables fori ∈ V and
k,g∈K , k 6= g:

yik =

{

1 if state trooperk serves vertexi;
0 otherwise.

and uikg =

{

1 if sig ≥ fik;
0 otherwise.

By definition ofyik,

∑
j∈△+(i)

xi jk = yik, ∀k∈ K and ∀i ∈N . (8)

y0,k = yn+1,k = 1, ∀k∈ K . (9)

Additionally, by definition,uikg or uigk can only be equal to 1 when bothyik = 1 andyig = 1, or
elseuikg = uigk = 0 for i ∈ V . The following constraints establish the relationship betweenyik and
uikg:

uikg+uigk ≤ yik, ∀i ∈ V and k, g∈K , g> k. (10)

uikg+uigk ≤ yig, ∀i ∈ V and k, g∈K , g> k. (11)

uikg+uigk ≥ yik +yig−1, ∀i ∈ V and k, g∈K , g> k. (12)

Now we are ready to present the constraints that eliminate “double counting” if there are two or
more cars at the same time window of a certain vertex. That is,for i ∈ V , if yik = 1 andyig = 1,
then fik ≤ sig or sik ≥ fig, wherek,g∈ K andk 6= g:

fik−sig−M ∗ (1−uikg)≤ 0, ∀i ∈ V and k, g∈K , g> k. (13)

fig−sik−M ∗ (1−uigk)≤ 0, ∀i ∈ V and k, g∈K , g> k. (14)

whereM is a large constant.

Integrality and Non-negativity Constraints

Finally, we state continuous and binary variables:

sik, fik ≥ 0 and xi jk ,yik,uikg ∈ {0,1}∀i, j ∈ V and k, g∈K , g> k. (15)

Overall Model

The overall model is to maximize the effective service time for MCPRP subject to constraints
(1)–(15). We solve this formulation using CPLEX 12.1. However, even for small instances with
40 hot spots and 2 state trooper cars, CPLEX runs out of memory.
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Theorem 1 MCPRP is NP-hard.

The proof is found in Appendix. Due to Theorem 1, we focus on two two-phase heuristics. These
are composed of a construction algorithm and improvements based on local-search and
tabu-search. Before we discuss our solution approaches, wenote that this model can be used to
evaluate other performance measures, including “Percentage of Hot Spots Covered (HS%)” and
“Percentage of Coverage Length (TW%).”

HS%: This performance measure calculates, among all the hot spots, the percentage covered as
a result of the MCPRP:

HS%=
∑i∈N ∑k∈K yik−∑i∈N ∑g6=k(uigk+uikg)

n
∗100,

where the numerator represents the total number of visited hot spots.

TW%: This performance measure calculates the percentage of total available time serviced by
the MCPRP:

TW%=
∑i∈N ∑k∈K ( fik−sik)

∑i∈N (l i−ei)
∗100.

In this measure, the numerator is the service time returned by the MCPRP, and the
denominator is the total time window length.
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Section 4
Solution Approaches

Our solution approaches build on the following characterization of the optimal solution.

Proposition 1 If the optimal sequences of covered hot spots are known, in the optimal solution,
for each state trooper k∈ K , for a visited hot spot i∈N ,

fik =

{

min{l i, T− ti,n+1}, if i is the last hot spot visited on the route of k;
l i, otherwise;

where T= Lp, the end of the shift p.

This proposition states that, in the optimal solution, the end of service time at a visited hot spoti
depends on the order ofi in the route. If hot spoti ∈N is the last hot spot on routek, fik is the
minimum of the latest time window of hot spoti andT− ti,n+1 (the time required to get back to
the post within the shift duration). Otherwise, hot spoti ∈N is an intermittent node in the route
and fik = l i . In other words, state trooperk can stay until the latest time window of each hot spot
that is on the route. The complete proof is presented in Appendix.

This proposition states that if there is excess time in a routethe time spent neither in effective
coverage nor in travel between hot spotsit does not make a difference for the construction of
routes or for the objective value whether a state trooper spends it at the hot spot he just covered or
at the hot spot he will cover next. Therefore, by this proposition, we arbitrarily place any excess
time at the beginning of the next hot spot without loss of generality. These characteristics are due
to two assumptions of the problem: i) the travel timeti j is fixed, as travel speed is constant of 60
miles/hour; and ii) all hot spots have the same priority. If either one of these assumptions is
relaxed, then the excess time may not be arbitrarily placed in a route as it influences the order of
nodes covered, travel times, and coverage and hence impactsthe optimal solution. We report
results related to relaxing the hot spots priorities in the computational experiments section.

4.1 Construction Algorithm

Based on Proposition 1, we develop a construction algorithmwith two parts involving route
initialization and hot-spot insertion.

4.1.1 Route Initialization Algorithm

First, we define the following two algorithm parametersHlimit andTlimit , which help us in building
the initial routes:

• Hlimit provides an upper bound on the number of hot spots to be considered for insertion
into a route. Our hot spots are ordered according to the starttime of their time windows. To
avoid big time gaps between the start times of two consecutive hot spots and hence to
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eliminate any potential excess waiting, we only consider the nextHlimit hot spots as the
potential next hot spot to be included in this route after a node is inserted into a route. We
setHlimit as⌈n/|K |⌉.

• Tlimit is a clustering factor where travel time from one hot spot to the next hot spot cannot
exceed a certain time span. After preliminary experimentations, we setTlimit to 100
minutes, which is reasonable given that for the instances wetestedT = 480 minutes. If it
takes a state trooper more than 100 minutes to travel from hercurrent hot spot to the next,
then the algorithm is not going to consider that point.

Hence,Hlimit provides a temporal limit whileTlimit provides a spatial restraint on the initial routes.

Algorithm 1 ProcedureRouteInitilization.

1: Uncovered hot spot setU←N . Fork∈ K , initialize Routek← /0.
2: for ∀k∈K do
3: Routek← Routek∪{0}.
4: i∗← argmaxi∈U{l i−max(ei , t0i) : i ≤ Hlimit , t0i ≤ Tlimit , t0i ≤ l i}.
5: si∗,k←max{ei∗, t0,i∗} and fi∗,k← l i∗. Routek←Routek∪{i∗}. U←U \{i∗}.
6: end for
7: for ∀k∈K do
8: i← Routek.lastHotSpot.
9: for ∀ j ∈U such thati < j ≤ (i +Hlimit), ti j ≤ Tlimit , andl i + ti j < l j do

10: if l j + t j ,n+1 < T then
11: i∗← argmaxj∈U{l j −max(ej , l i + ti j )}.
12: si∗,k←max{ei∗, l i + ti,i∗} and fi∗,k← l i∗. Routek← Routek∪{i∗}.
13: if ei∗ < l i + ti,i∗ then
14: l i∗ ← l i + ti,i∗.
15: else
16: U←U \{i∗}.
17: end if
18: else
19: if l i + ti j < T− t j ,n+1 then
20: i∗← argmaxj∈U{T− t j ,n+1−max(ej , l i + ti j )};
21: si∗,k←max{ei∗, l i + ti,i∗} and fi∗,k← T− ti∗,n+1. Routek← Routek∪

{i∗}.
22: Repeat Steps 13 to 17.
23: end if
24: end if
25: end for
26: end for

TheRouteInitializationheuristic, for which the pseudo-code is given in Algorithm 1, builds on a
greedy principle. Each state trooper car starts from the state trooper post at the beginning of the
shift. Among all the hot spots within the distance rangeTlimit and time rangeHlimit , if the arrival
time of state trooperk from hot spoti at one of these hot spots—say hot spotj—comes before the
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end of the time window (l i + ti j < l j ), the heuristic picks the hot spot that maximizes the objective
as the next place to visit (i∗). The maximum contribution is calculated as
maxj{l j −max(ej , l i + ti j )}. Then the start and finish times of service ati∗ are calculated by
comparisons between the arrival time ati∗ and the earliest and latest time windows respectively,
as in line 12. After the next hot spot is selected, the algorithm is divided into two cases as
described in steps 10 and 19: whether there is enough time forthe state trooper tofully service the
next hot spot and be back at the state trooper post before the end of the shift. In the first case,
there exist hot spots where the coverage and travel-to-posttimes are within the shift duration.
Among these hot spots, the hot spoti∗ with the maximum coverage potential is added to the route.
Steps 13 through 17 check for potential multi-car visits. Specifically, if a state trooper arrives at or
beforeei∗ , the hot spoti∗ is covered fully from[ei∗, l i∗] and is removed fromU. Otherwise, hot
spoti∗ is split into uncovered[ei∗,si∗,k] and covered[si∗,k, fi∗,k] parts. In this situation,i∗ with an
updatedl i∗ stays inU. For the second case, starting with Step 19, it is not feasible for a state
trooper to stay until the end of the time window of hot spotj due to the approaching end of the
shift. Therefore, by factoring in the travel time from hot spot j to the state trooper postn+1, the
state trooper can stay untilT− t j ,n+1. Among all the partially coverable hot spots, the one with
the maximum coverage gaini∗ is selected. Again, to ensure multi-car visits, steps 13 through 17
are repeated. In this way, initial|K | routes are created in parallel.

4.1.2 Insertion Algorithm

After route initialization, to cover the hot spots that are not covered yet, we proceed with the
following insertion algorithm. To insert an uncovered hot spot ī ∈U before a hot spoti in a
certain routek∈K , we first check the time-window feasibility of hot spoti; that is, the arrival
time at hot spoti is less than the latest time window of the hot spot:l ī + tī,i < l i. In this algorithm,
starting with the first hot spot of the first route, we check if we can insert any more hot spots until
no longer feasible. The search ends when all of the|K | routes are checked.

If it is feasible (in terms of travel and coverage times) to insert a new hot spot̄i right beforehot
spoti on routek, this insertion will not influence the start or finish times ofhot spots on this route
prior to hot spoti−1. Insertion of̄i will only shift the starting time of the hot spoti, sik, to si′k.
Hot spots afteri will not be affected since the finishing time ati remains unchanged; that is,
fik = l i . The additional coverage of hot spotī benefits the objective function by as much as
fī,k−sī,k, where fī,k = l ī andsī,k = max(eī , l i−1+ ti−1,ī). On the other hand, the coverage of hot
spoti may potentially be reduced due to the late starts′i,k at hot spoti. The change in the objective
due to insertion of̄i right beforehot spoti is given as:

δ = Benefit Afterī Insertion−Original Benefit

= { fī,k−sī,k}+{ fik−s′ik}−{ fik−sik}
= l ī−sī,k− (s′i,k−si,k). (16)

Whenδ > 0, there is value in includinḡi between hot spotsi−1 andi; or otherwise, we continue
to check the next uncovered hot spot.
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4.2 Improvement Algorithms

As mentioned above, hot spots are inserted sequentially. The construction algorithm is affected by
the selection and order of the subsequently inserted hot spots. The improvement algorithms
address this issue by utilizing modified versions of relocate and exchange operators introduced
originally for the vehicle-routing problem with time windows (Braysy and Gendreau, 2005a,b).
The relocate operator finds improvements by moving a hot spotfrom one route to another,
whereas the exchange operator exchanges hot spots between two routes. The modification step
involves revoking the insertion algorithm after each move.
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Figure 3: Neighborhood search operators

4.2.1 Relocate Operator

In Figure 3(a), we present the relocate operator, where hot spot i from the origin routek is moved
into the destination routeg, k 6= g. In the figure, we also represent the other routes visitingi—due
to the possible visits by multiple cars—in dotted red lines.We let(sik, fik) and(sig, fig) as well as
(si+1,k, fi+1,k) and(s′i+1,k, f ′i+1,k) denote the start and finish times at hot spotsi andi +1 before
and after the move respectively. Hot spotsj and j +1 follow a similar notation. After the move,
the change in the objective is

∆ = ( fig−sig)− ( fik−sik)+( f ′i+1,k−s′i+1,k)− ( fi+1,k−si+1,k)+( f ′j+1,g−s′j+1,g)− ( f j+1,g−sj+1,g)

= (sik−sig)+(si+1,k−s′i+1,k)+(sj+1,g−s′j+1,g),

as finishing times before and after the move are the same. However, modification of the start
times of the coverage is more complicated due to the possibility of covering a hot spot with
multiple cars. If hot spoti is only visited by routek or k is the first of multiple visits to hot spoti,
the start time after the move is obtained by comparing the arrival time at hot spoti from a visit at
j with the earliest time window hot spoti; that is,sig = max{ f jg+ ti j ,ei}. Otherwise, hot spoti is
visited by multiple cars and route/cark is an intermittent car. That is, the hot spoti is covered by
some other car(s) untilsik. Therefore, the start time after the move is obtained by comparing the
arrival time at hot spoti from j andsik; that is,sig = max{ f jg+ ti j ,sik}. A similar check takes
place for updatings′i+1,k ands′j+1,g.

If ∆≤ 0, the relocate operator is not successful in generating a better solution and is not pursued
any further. We move onto the next route and/or hot spot. Otherwise∆ > 0 and we invoke the
insertion algorithm again as relocation may open additional possibilities to insert an uncovered
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hot spot. We check if an uncovered hot spot can be inserted between the nodes defined by the
modified arcs one by one:(i−1, i +1), ( j, i), and(i, j +1). We letδ1, δ2, δ3 be the benefits of
inserting an uncovered hot spot beforei +1, i, and j +1 respectively. Each of these benefits is
calculated as in Equation 16. Ifδ1 > 0, the insertion beforei +1 is accepted and updated benefit
∆̂ is set as∆+δ1. Otherwise, ifδ2 > 0, the insertion beforei is accepted and̂∆ is set as∆+δ2.
Finally, if δ3 > 0, ∆̂ is set as∆+δ3. If none of the insertions are favorable—that is,δa < 0 for
a= 1,2,3—the∆̂ is the same as∆. Among the positivê∆ obtained through the whole relocate
neighborhood, we pick the one that provides the maximum benefit and implement the relocate
(and if there is one, insertion) associated with that maximum ∆̂. That is, we use the Global Best
(GB) acceptance rule.

4.2.2 Exchange Operator

In Figure 3(b), we present the exchange operator, where two hot spotsi and j swap routes
simultaneously. As in Figure 3(a), the dotted red lines represent the possibility of other state
trooper car(s) covering hot spotsi and j. After the swap, the start times of the hot spotsi, i +1, j,
and j +1 will be modified. The corresponding change in the objectiveis

∆ = ( fig−sig)− ( fik−sik)+( f ′i+1,k−s′i+1,k)− ( fi+1,k−si+1,k)

+( f jk−sjk)− ( f jg−sjg)+( f ′j+1,g−s′j+1,g)− ( f j+1,g−sj+1,g)

= (sik−sig)+(sjg−sjk)+(si+1,k−s′i+1,k)+(sj+1,g−s′j+1,g).

Similar to the relocate operator, these start times are influenced by the number of state trooper
cars visiting the hot spot and the order of the cars. In particular,

sig =

{

max{ f j−1,g+ t j−1,i, ei} if k is the 1st visit;
max{ f j−1,g+ t j−1,i, sik} O/W.

sjk =

{

max{ fi−1,k+ ti−1, j , ej} if g is the 1st visit;
max{ fi−1,k+ ti−1, j , sjg} O/W.

The start timess′i+1,k ands′j+1,g are calculated in a similar manner.

If ∆ > 0, the exchange is a candidate to be accepted. As with the relocate operator, the exchange
may provide a possibility to insert an uncovered hot spot between(i−1, j), ( j, i +1), ( j−1, i),
and(i, j +1). The benefits of insertion on these arcs are calculated asδ1, δ2, δ3, andδ4

respectively, as in Equation 16. The insertion is evaluatedin that order, and the first insertion with
a positive benefit—that is,δa > 0 for a= 1,2,3,4—is accepted. The total benefit∆̂ is updated as
∆+δa. If none of the insertions return a benefit, then∆̂ is just set to∆. Similar to the relocate
operator, the exchange operator is implemented using the GBcriteria. The exchange (and
potential insertion) associated with the largest∆̂ in the neighborhood is accepted. After the
exchange (and the potential insertion), the routes and the uncovered hot spot setU are updated
accordingly.

4.2.3 Local Search

After introducing the neighborhood search components, Figure 4 depicts how these play a role in
our local search implementation. In the first stage of improvement, the algorithm loops through
the relocate operator embedded with the insertion step until no improvement is found. Note that
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after the relocate operator is embedded with insertion step, the insertion algorithm is called again
because if there is any move, theU set and routes are updated. Thus, there is a chance to insert an
uncovered hot spot into any of the existing routes. In the third stage of improvement, the
exchange operator embedded with insertion step keeps searching until no further improvement
can be found, followed by the insertion step for the same reason as the first stage of improvement.
The local search terminates when no further improvement is available.
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Figure 4: Local search and improvement flow charts

4.2.4 Tabu Search

Based on the fact that local search can be trapped at a local optimum, we also apply a tabu-search
algorithm as a part of the improvement step.

In our implementation, the tabu list consists of two attributes: state trooper car index and hot-spot
identification. Specifically, if the most recent solution includes covering hot spoti by state trooper
k, then the(i,k) pair is marked as tabu. The tabu list length and tabu tenure are set to 5×⌊√n⌋,
directly correlated with the total number of hot spotsn. In the neighborhood, the relocate operator
is followed by the exchange operator. Each operation is conducted over all of the routes and
visited hot spots. Random numbers determine the starting hot spot and the starting route number
for each operator. Once the search starts, it sweeps throughall of the hot spots and routes
exhaustively.

If it is feasible to carry out a particular operation, both state trooper car and visited hot spot
indices are added to the tabu list. With the relocate operator, only the relocated hot spot and its
corresponding state trooper indices are added to the tabu list. On the other hand, with the
exchange operator, both of the exchanged hot spots and theircorresponding route indices are
added to the tabu list. As an aspiration criteria, tabu is only overridden when the newly obtained
objective is better than the best one found thus far.
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Section 5
Computational Experiments

5.1 Performance-based Experiments

To test the performance and effectiveness of the model and heuristic approaches, we conduct a
series of numerical studies on randomly generated problemsranging from small to moderately
large as well as on real-life data captured from CARE (see Section ).

To benchmark the quality and runtime of our heuristics, we also run CPLEX 12.1 for all of the
instances. We implement and run the algorithms using C++ on aDell Poweredge 6850 with four
dual-core 3.66GHz Xeon processors and 8GB of memory.

5.1.1 Experiment with Randomly Generated Data

We randomly pick 10, 20, and 40 locations on the highway and corresponding earliest and latest
time windows from a pool of real-life data, with 20 instancesin each data set. Both algorithms are
tested when there are up to 8 state trooper cars available; that is, a total of 480 (3×20×8)
instances.

We compare the solutions returned by local search (LS) and tabu search (TS) with the ones
obtained from CPLEX, as shown in Table 1. Unfortunately, CPLEX runs out of memory for even
relatively small instances, such as when 2 state trooper cars are available for 40 hot spots. We
evaluate our heuristics by calculating the percentage of the gap between the objective returned by
our heuristics and lower bound (LB) of CPLEX, which is definedas
Gap = (Ob jective−LB)/LB∗100. Note that since we have a maximization problem, the lower
bound returns the best feasible solution that CPLEX can obtain and a positive gap indicates that
the heuristics outperform the best feasible solution returned by CPLEX.

In Table 1, we report both average (Avg.) and maximum (Max.) gaps that demonstrate the best
performance of the heuristics. We also report the number of times that CPLEX is able to find
optimal solution out of all 20 instances, contained in the column “No. opt.,” and the number of
times that LS/TS is at least as good as the LB returned by CPLEX, contained in the column of
“No. best.”

In Table 1, we observe that CPLEX has a deteriorating performance as the number of hot spots
and state trooper cars increases. On the contrary, for theseinstances where CPLEX is struggling,
the frequency of finding a solution at least as good as the CPLEX LB (“No. best”) is increasing
for our heuristics. Specifically, our heuristics are able tofind a solution at least as good as the
CPLEX LB for 10 HS and 20 HS most of the time and for 40 HS some of the time, especially
with a higher number of cars. In fact, the heuristics return slightly better solutions when there are
a higher number of hot spots and state trooper cars. With respect to the performance comparison
between LS and TS, even though there is not much gap difference for LS and TS, LS still
performs slightly better than TS especially for higher number of hot spots.
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Table 1: Performance of LS and TS for random data
Data Set No. No. CPLEX LS TS

Cars Instances No. opt. Avg. Max. No. best Avg. Max. No. best
10HS 3 20 20 -1.4 0.0 18 -1.4 0.0 18

4 20 3 0.0 0.0 20 -2.1 0.0 19
5 20 1 0.1 3.4 20 0.1 3.4 20
6 20 1 0.1 3.4 20 0.1 3.4 20
7 20 0 0.1 3.4 20 0.1 3.4 20
8 20 0 0.1 3.4 20 0.1 3.4 20

20HS 3 20 2 -1.3 0.0 5 -1.5 0.0 4
4 20 2 -1.0 0.0 8 -1.0 0.0 5
5 20 2 -0.8 0.0 12 -0.9 0.0 15
6 20 0 -0.3 0.0 16 -0.8 0.0 16
7 20 0 -0.5 0.0 17 -0.5 0.0 17
8 20 0 -0.1 0.0 17 -0.1 0.0 17

40HS 3 20 0 -4.9 0.0 0 -5.7 0.0 0
4 20 0 -2.6 0.0 0 -3.3 0.0 0
5 20 0 -0.5 4.1 4 -1.3 1.9 2
6 20 0 -0.9 1.4 8 -1.3 1.1 3
7 20 0 0.0 4.4 12 -0.4 4.4 8
8 20 0 0.1 3.3 14 -0.1 2.6 12

From the perspective of runtime of local search or tabu-based improvement, both are less than 15
seconds even for instances with 40 hot spots. On the contrary, the more cars there are and the
bigger the road network is, the longer it takes CPLEX to find anoptimal solution. For instance, it
typically takes around 1−2 hours for CPLEX to find an optimal solution (for smaller instances)
or just an LB (for larger instances). Thus, we conclude that our heuristic approaches are more
practical since state troopers need to respond to road condition changes relatively frequently.

5.1.2 Experiment with Real-Life Data

We also solve the real instances obtained from the CARE database and optimize covering and
routing for state troopers on the highways by work shift, by day of week, and by region. Due to
the large number of tests, we select three representative areas with a large number of hot spots:
Jefferson County rural area (Jeff), the Mobile area (Mob), and Tuscaloosa County rural area
(Tus). The most representative days and times for the experiment are Monday, Friday, and
Saturday with three shifts: a morning shift from 7:00am to 3:00pm, an afternoon shift from
3:00pm to 11:00pm, and an evening shift from 11:00pm to 7:00am. As the other weekdays
(Tuesday through Thursday) mimic Monday and Sunday mimics Saturday, we do not report the
results for these days.

In Table 2, we present the results for local and tabu search respectively. Note that the data
instances are referred to using the first letter representing the day (Monday) and the second letter
representing the shift. For instance, MM refers to the Monday morning shift. With three work
days and three shifts, there are a total of nine instances in every county. Each instance is tested
with various state trooper cars from 3 to 8. At the last row of each county, we summarize the
number of optimal solutions CPLEX returned. For each instance with a particular number of state
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troopers, we report the gap between objective returned by local and tabu search and LB of
CPLEX respectively. A positive gap refers to a better objective value by our heuristics, whereas a
negative gap indicates that the best feasible solution returned by the CPLEX is better.

Table 2: Performance of LS and TS for real data
Instances LS TS

3 4 5 6 7 8 3 4 5 6 7 8
Jeff MM -1.5 -7.1 0.0 0.0 0.0 0.6 -1.5 -7.1 0.0 0.0 0.0 0.6

MA -5.8 -6.1 -7.4 -0.2 -2.8 -1.0 -7.6 -7.4 -8.6 -0.5 -2.3 -0.3
ME 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FM -2.6 -2.9 0.0 0.0 0.0 0.0 -2.6 -2.9 0.0 0.0 0.0 0.0
FA -1.2 -2.3 0.1 0.0 0.0 -0.6 -1.2 -2.3 -2.1 0.0 0.0 -0.6
FE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SM 0.0 3.2 0.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0 0.0
SA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

No. CPX Opt. 1 1 0 0 0 0 1 1 0 0 0 0

Mob MM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MA -3.2 -2.8 0.0 -2.5 0.0 0.0 -3.2 -2.8 0.0 -0.3 0.0 0.0
ME -1.2 0.0 0.0 0.0 0.0 0.0 -1.2 0.0 0.0 0.0 0.0 0.0
FM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FA -1.7 0.0 0.0 0.0 0.0 0.0 -1.7 -0.8 0.0 0.0 0.0 0.0
FE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -4.1 0.0 0.0 0.0 0.0
SM -4.7 -0.2 -0.7 0.0 0.0 0.0 -4.7 -0.2 -0.3 0.0 0.0 0.0
SA 6.6 19.5 0.0 0.0 0.0 0.0 6.6 19.5 0.0 0.0 0.0 0.0
SE -1.8 0.0 0.0 0.0 0.0 0.0 -1.8 0.0 0.0 0.0 0.0 0.0

No. CPX Opt. 5 2 0 0 0 0 5 2 0 0 0 0

Tus MM -0.2 0.0 0.0 0.0 0.0 0.0 -0.2 0.0 0.0 0.0 0.0 0.0
MA -0.2 -0.8 0.0 0.5 0.7 -0.3 -0.2 -0.8 0.0 0.5 0.7 -0.3
ME 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FA 0.0 0.0 0.0 0.0 0.0 0.0 -2.8 0.0 0.0 0.0 0.0 0.0
FE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -4.6 0.0 0.0 0.0 0.0
SA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SE -1.4 0.0 0.0 0.0 0.0 0.0 -1.4 0.0 0.0 0.0 0.0 0.0

No. CPX Opt. 5 0 0 0 0 0 5 0 0 0 0 0

Typically the gap between the heuristics and CPLEX is nonnegative since the solution quality is
as good as or better than that of the CPLEX LB. Most gaps fall between−1% and 1%, with very
few outliers. Some of these extremes are the negative gaps of−5.8%,−6.1%, and−7.4% for
Jefferson during the Monday afternoon shift with three, four, and five state trooper cars
respectively. In this particular instance, the number of hot spots is 27 with varying durations.
With a limited number of state trooper cars and an excess number of hot spots to cover, the
heuristics tend to not perform as well since, in general, they do depend on the improvements
(relocate or exchange) among a number of routes.

On the other extreme, there is a positive gap of 19.5% for Mobile during Saturday afternoon shift
with four state trooper cars. This is attributed to the poor performance of CPLEX; it is not due to
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our formulation or the gap. More specifically, for this instance as well as the instances marked in
bold, CPLEX claims to reach the optimum with the lower bound equal to the upper bound.
However, our heuristicsreturn a better solutionthan the claimed CPLEX optimum. We double
checked these solutions with manual calculations and foundthat the solutions returned by the
heuristics are indeed feasible and optimal. We reported ourmodel and these problematic
instances to ILOG technical support group. They confirmed that there is an internal failure in the
CPLEX engine when solving these instances. These instanceshave been added to their test bed to
improve the CPLEX engine.

In summary, as the size of the problem grows, CPLEX has a harder time in obtaining reasonable
solutions. In comparison between LS and TS, LS outperforms TS slightly most times. Again, for
the computational time, our heuristics provide results within seconds; while CPLEX takes at least
couple of hours to find a relatively good feasible solution.

5.2 Managerial Insights

In this section, we provide managerial insights for decision makers based on our solutions using
real data. In Figures 5 and 6, we plot the objective value ofMCPRPreturned by LS and TS with
respect to different state trooper cars respectively. Fromthe plotted charts, we can determine how
many state trooper cars are needed for each data set. Intuitively, as the number of state troopers on
patrol increases, hot-spot coverage improves. However, there are diminishing returns with the
addition of each state trooper. One interesting observation is that, as there are more hot spots, the
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Figure 5: The coverage with LS and TS due to different state trooper cars in Jefferson County

objective is higher. This is due to higher potential coverage. However, in Jefferson County, the
top line corresponds to Friday afternoon with 19 hot spots. This particular instance returned a
higher objective compared to, say, Monday afternoon with 27hot spots. Investigating this
phenomenon further, we found that the hot-spot time windowsare not equal. In the data set with
19 hot spots, most hot spots are “hot” for more than an hour, whereas in the data set with 27 hot
spots, most of the hot spots are only “hot” for half an hour. Hence, the objective not only depends
on the total number of hot spots available but also length of each hot spot.

Investigating Figures 5 and 6, we can help identify how many state troopers are needed in each
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Figure 6: The coverage with LS in the city of Mobile and Tuscaloosa County

shift on each day. For instance, for Jefferson County on Monday and Friday evenings, three state
trooper cars suffice. However, for Saturday evening at leastfive cars are needed. Furthermore, for
Monday and Friday afternoons, even eight cars may not be enough. This analysis not only
provides a good basis for how to allocate resources; it also demonstrates how the adverse effects
of lack of resources (that is, potential budget and personnel cuts) can be alleviated.

Note, theoretically speaking, that all lines should be concave; however, in part(b) of Figure 5, the
objective for Monday afternoon is not concave, since they are returned by our heuristics.

Table 3: Service measure performances by incremental statetroopers
Data
Set MM MA ME FM FA FE SM SA SE
Jeff Cars 8 8 3 5 8 3 5 4 5

HS 21 27 6 17 19 8 18 14 16
HS% 90 93 67 100 100 100 89 100 100
TW 810 1110 179 960 1410 299 600 449 570

TW% 86 84 63 81 86 96 88 88 89
Mob Cars 5 7 4 6 5 5 6 5 4

HS 20 17 9 15 15 10 19 21 8
HS% 100 100 100 100 100 100 100 100 100
TW 840 870 330 930 1050 420 910 1020 299

TW% 96 95 93 94 97 89 85 95 96
Tus Cars 4 7 4 4 5 4 5 3 3

HS 15 22 8 15 15 8 9 13 16
HS% 100 100 100 100 100 100 100 100 94
TW 480 870 270 600 900 330 270 480 539

TW% 92 98 89 89 95 89 93 94 76

For these instances, we also compute performance measures for our suggested covering plan: how
many hot spots we will cover and how long the hot spots will be covered. In Table 3, we present a
detailed plan with respect to how many state troopers are needed per shift, per day, and per region,
shown in row “Cars” and performance measures shown in rows “HS%” and “TW%” for the
Jefferson, Mobile, and Tuscaloosa areas. From these results, we observe that hot-spot coverage
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percentages are quite close to 100% for our suggested plan. Furthermore, the objective coverage
percentage is above 85%, except for three instances. For example, the “TW%” is 63% for the
Jefferson ME shift and 76% for the Tuscaloosa SE shift. This is due to the start time of these hot
spots and the travel time required to reach these hot spots. For these instances, even with
unlimited resources, it is not possible to fully cover the total hot times, unless the state troopers
are allowed to start patrolling from locations other than the state trooper post.

In a final experiment, we evaluate the impact of having hot spots with varying weights. Until this
last experiment, all of the experiments assume equally weighted hot spots. However, in real life,
some hot spots are more important than others due to the potential severity of the accidents at
those locations. We represent these severity levels by attaching different weights to hot spots. We
use two arbitrary weight schemes for testing purposes: highvariance with weights of 1, 1.5, and
2; and low variance with weights of 1, 1.1, and 1.2. In Table 4,we report the performance of LS
with 2, 4, 6, and 8 cars using these two weight schemes. On the bottom row of the table, we
calculate the average and maximum gap over all of the instances given a particular resource level.
Since TS has similar performance as LS, for the sake of the brevity, we do not report the results.
The results of weighted schemes demonstrate the benefit of heuristics, as the heuristics beat the
LB of the CPLEX with high percentages, especially for instances with high number of hot spots
such as Mobile SA (21 HS), Jefferson MA (27 HS), Jefferson MM (21 HS), and Tuscaloosa MA
(22 HS). The benefits are more pronounced with high variance weight scheme. Even though
Proposition 1 does not hold for hot spots with varying weights and the heuristics are based on this
proposition, the performance of the heuristics is very robust.
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Table 4: LS performance for real data with different weights
Instances High Weights (1,1.5,2) Low Weights (1,1.1,1.2)

2 4 6 8 2 4 6 8
Jeff MM 0% 9% 24% 0% -2% 0% 1% 8%

MA 22% -6% 26% 30% 6% 8% 13% 7%
ME 10% 0% 0% 10% 0% 1% 1% 2%
FM -9% 24% 24% 1% -13% -4% -3% -3%
FA 0% -6% 23% 11% -4% -3% -1% -3%
FE 13% 0% 56% 14% 3% 0% 4% 4%
SM -4% 6% -19% -5% -10% -5% -15% -15%
SA -7% -26% -20% -15% -1% 6% -12% -12%
SE 5% -1% 1% 4% -2% 12% -3% -3%

Mob MM 10% 29% 1% 3% -4% 2% 4% 4%
MA 6% 17% 0% 21% -13% 23% 2% 2%
ME 0% -8% 2% 8% -8% -1% -4% -4%
FM -10% -7% -33% -24% -6% 5% -3% -3%
FA 2% 10% -2% 4% -6% 6% 0% 0%
FE 20% 2% 2% 5% -5% -4% -11% -11%
SM 8% -8% -5% -10% 4% 13% 11% 11%
SA 17% 33% 15% 15% -2% 7% 2% 2%
SE 16% 0% 0% 17% 1% 0% 2% 2%

Tus MM -5% -14% 15% -3% -12% 10% -13% -13%
MA 25% 10% 18% 8% 0% 23% 6% 5%
ME -1% 31% 18% 13% -9% 3% 0% 0%
FM -4% -12% -12% -2% -12% -9% -11% -11%
FA 30% 38% 41% 35% 3% 5% 7% 7%
FE 21% 39% 39% 24% 0% 4% 4% 4%
SM -13% -1% -1% -10% -12% -11% -11% -11%
SA 3% 6% -11% 4% -8% -7% -9% -9%
SE 7% 7% 39% 9% -11% 2% 3% 3%

Avg. 6% 6% 9% 6% -5% 3% -1% -1%
Max. 30% 39% 56% 35% 6% 23% 13% 11%
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Section 6
Conclusions and Future Work

To maximize the effectiveness of state trooper patrols by covering hot spots, we develop a novel
model. In this model, we determine whether a state trooper visits a hot spot and their arrival and
departure times at the hot spots. As the large instances of the problem are beyond the capability of
any off-the-shelf optimization software, we design algorithms based on local and tabu search
using different neighborhoods. Then we test our model and solution approaches by using sets of
random and real data. Compared with the CPLEX LB, in most instances our solutions are at least
as good as or better than CPLEX and have short runtimes. Furthermore, we have found several
instances where CPLEX failed to solve the problem.

The computational testing results are particularly usefulfor decision-makers in determining the
optimal number of state troopers.This is important as better coverage is believed to lead to fewer
accidents, lower economic impact, and better road safety for everybody. On the other hand, the
model also shows the best coverage given a particular resource level. This analysis would be
valuable to determine how to reallocate resources in the event of a potential budget cut or increase.

The contributions of the paper to the literature are threefold. First, the literature on TOPTW
focuses on benefit collection of fixed values given a priori, whereas MCPRP treats profits as a set
of “continuous decision variables” and allows multiple visits to the same hot spot. Second, the
solution approaches developed can solve even real-life instances of the problem within seconds.
Finally, this paper departs significantly from the TOPTW literature by introducingeffective
patrolling measures(HS% and TW%), which are useful for decision-makers to determine the
optimal levels of coverage for a given resource level.

There are several potential extensions. First, in this paper, we assumed constant travel speed for
state troopers traveling from one hot spot to another. Instead of constant travel speed, generalizing
the problem where travel speed is correlated with time of dayor day of week would be practical
and interesting. Second, the model could be extended to consider multiple state trooper posts or
the ability of the troopers to take their work cars home instead of returning to the state trooper
post. This problem would be analogous to the multi-depot vehicle routing problem with time
windows. Thirdly, we are interested in incorporating an on-call response into the model,
especially to utilize coverage for accidents immediately using dynamic crash information.
Finally, the mission statements of many of the highway patrol departments in the United States
reflect the belief that issuing citations is an effective auto-crash countermeasure (Steil and Parrish,
2009). Hence, the results of this paper can be extended into an application focused on revenue
management.
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Appendix

Proof of Theorem 1:

The maximal covering location problem (MCLP) establishes aset ofm facilities to maximize the

total weight of “covered” customers, where a customer is considered covered if she is located at

most a distancer from the closest facility. The problem was originally introduced by Church and

ReVelle (1974) and is NP-hard (Marianov and ReVelle, 1995).To prove that MCPRP is NP-hard,

we need to show that the MCLP is polynomially reducible to MCPRP.

Suppose we had a polynomial algorithm for solving the decision version of the MCPRP. Given

G = (V ,E), time windows associated with all hot spots,|K | state trooper cars, shift durationT ,

and a positive numberB, our algorithm would produce a “yes” or “no” answer in polynomial

time to the decision question of MCPRP: are there|K | routes that satisfy the time-window

restrictions of all hot spots and that take less thanT such that the total coverage time is at least

B? Now construct an instance of MCPRP as follows:[ei , l i] = [ei , ei +αi ], whereαi is an

arbitrary small number, say 1 minute, such that the stop at hot spoti can only collectαi .

Now consider the following notation for the MCLP:
I Set of hot spots.

J Set of all of the routes that satisfy the time windows and shift duration restrictions.

ai Coverage benefit, that is for anyk∈K , ai = fik−sik = l i−ei = αi .

Ni Set of routes that include hot spoti.

Decision Variables

Xj 1, if route j is selected as a part of patrolling plan, 0, otherwise.

Yi 1, if hot spoti is covered, 0, otherwise.

The mathematical formulation is presented as

max∑
i∈I

aiYi (17)

s.t.

∑
j∈Ni

Xj ≥Yi , ∀i ∈ I . (18)

∑
j∈J

Xj = |K |. (19)

Yi ∈ {0,1} andXj ∈ {0,1}, ∀i ∈ I and j ∈ J . (20)

Constraint 18 allows the coverageYi to equal 1 only when one or more routes in setNi are chosen.

The number of routes is restricted to|K | in constraint 19. The solution to this problem specifies
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not only the maximal hot spot coverage but also the|K | routes that achieve this maximal

coverage.

The transformation to MCLP is polynomial since all of the problem parameters can be obtained in

polynomial time, including the setJ . Note that the size and construction of the routes are limited

by the time windows of hot spots and the shift duration. If a hot spot is chosen for a route, there

are only(n− p1) choices wherep1≥ 1 due to the time window restrictions, and every time a hot

spot is included in a route, the available choices decrease super-linearly. Then, a route can be

constructed by evaluatingn× (n− p1)× (n− p2)× . . .× (n− pk), where

pk > pk−1 > .. . > p2 > p1 andpk < n due toT and time windows. Thus, the setJ can be

constructed by an algorithm withO(npk) complexity.

Overall, the optimal solution to MCPRP provides an answer (yes/no) to the decision version of

the MCLP whether there exists|K | “facilities” (routes) to cover the “customers” (hot spots)to

obtain a benefit that is at leastB. Therefore, the proof is complete.�

Proof of Proposition 1:

The proof covers two cases. The first case considers the situation where pushing the end of

service time at one hot spot does not eliminate visits to the future hot spots. The second case

covers the possibility of reduction in the number of hot spots visited in the remainder of the

coverage due to incrementing the service time at one hot spot.

Case 1: No Hot-Spot Elimination

First, letS∗ be an optimal solution with the objective function valuev(S∗). For routek∈ K in S∗,

let i be the last hot spot wherefik < min(l i, 480− ti,n+1).

For a state trooper to get back to the state trooper post by theend of the shift, the finish time at the

last hot spot of his route should satisfyfik + ti,n+1≤ 480. Now let us create a new solutionS′ from

S∗ where everything is kept the same exceptf ′ik = min(l i, 480− ti,n+1). Thus, f ′ik > fik. Hence,

the objective value ofS′, v(S′), is larger thanv(S∗), which contradicts thatS∗ is optimal. Hence, if

i is the last hot spot visited on routek, fik = min(l i, 480− ti,n+1).

Consider now the situation wherei is not the last hot spot on routek. SupposeS∗ is an optimal

solution such that there is at least one hot spoti satisfying fik < l i. We again create a new solution

S′ from S∗ where everything is kept the same exceptfik = l i. The difference between

v(S∗)−v(S′) = fik− l i−si+1,k+s′i+1,k, wheres′i+1,k is the start time at hot spoti +1 on routek in

solutionS′. Now s′i+1,k−si+1,k = max(l i + ti,i+1, ei+1)−max( fik + ti,i+1, ei+1)

=











l i− fik if ei+1≤ fik + ti,i+1;

l i + ti,i+1−ei+1 if fik + ti,i+1 < ei+1≤ l i + ti,i+1;

0 if ei+1 > l i + ti,i+1.

31



Note that in all casess′i+1,k−si+1,k ≤ l i− fik. Therefore,v(S∗)−v(S′)< 0, which contradicts that

S∗ is the optimal solution. Sincei is an arbitrary hot spot, in the optimal solutionfik = l i on a

routek.

Case 2: Possible Hot-Spot Elimination

In this case, in the newly created solutionS′, the adjustment at the previous hot spot makes it

infeasible to reach the next hot spot(s) on the original route. So, state trooperk needs to skip some

hot spot(s) on the original route to go to the next reachable hot spot. We prove this case by

induction.

Case 2a: Base Step The increment of service time at hot spoti only eliminates the next hot spot

i +1 on the route. We assume that the triangular inequality holds; that is,ti,i+2≤ ti,i+1+ ti+1,i+2.

Then, for routek, the difference in the objective functionsv(S∗) andv(S′) comes from the

changes of contributions of hot spotsi, i +1, andi +2. These contributions are

• ∆i = fik−sik and∆′i = l i−sik;

• ∆i+1 = l i+1−max(ei+1, fik + ti,i+1) and∆′i+1 = 0; and

• ∆i+2 = l i+2−max(ei+2, l i+1+ ti+1,i+2) and∆′i+2 = l i+2−max(ei+2, l i + ti,i+2).

Thenv(S′)−v(S∗) = ∑i+2
j=i ∆′j −∑i+2

j=i ∆ j =

l i−max(ei+2, l i + ti,i+2)− fik− l i+1+max(ei+1, fik + ti,i+1)+max(ei+2, l i+1+ ti+1,i+2). Based on

different cases of max(ej , l i+1+ ti+1, j)−max(ej , l i + ti j ), we simplify this statement and observe

thatv(S′)≥ v(S∗) for every case. Even though one fewer hot spot is covered, thecoverage time is

not shortened. Hence, this objective value is at least as good as the original objective value.

Case 2b: Induction Step Now we assume that the increment in the service time eliminates the

next consecutiveb> 1 hot spots. In this case, letv(S′b) denote the objective function for the

modified solutionS′b. We assume thatv(S′b)−v(S∗)≥ 0. We need to prove that ifb+1 hot spots

are eliminated,v(S′b+1)≥ v(Sb+1) holds. From the triangular inequality, we know

ti,i+b+1≤ ti,i+b+1+ ti+b+1,i+b+2≤ ti,i+1+ ti+1,i+2+ ...+ ti+b−1,i+b+ ti+b,i+b+1+ ti+b+1,i+b+2. In

addition, for j = 1, . . . ,b+1, ∆i+ j = l i+ j −max(ei+ j , fik + ti,i+ j) and∆′i+ j = 0; and

∆i+b+2 = l i+b+2−max(ei+b+2, l i+b+1+ ti+b+1,i+b+2) and

∆′i+2 = l i+b+2−max(ei+b+2, l i + ti,i+b+2). Then

v(S′b+1)−v(S∗) =
i+b+2

∑
j=i

∆′j −
i+b+2

∑
j=i

∆ j

= v(S′b)−v(S∗)− (l i+b+1−max(ei+b+1, l i + ti,i+b+1))

−max(ei+b+2, l i + ti,i+b+2)+max(ei+b+2, l i+b+1+ ti+b+1,i+b+2)
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Based on the cases of max(ej+1, l j + t j , j+1)−max(ej+1, l i + ti, j+1) and the induction step,

v(S′b+1)≥ v(S∗). Hence, the modified solution is as good asS∗.

This concludes the proof.�
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